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Improvements in Risk Assessment Tools

» FORESEFE’s developments that aims to improve the Risk Assessment Tools:
» Risk mapping tool
» Virtual Modelling platform and asset failure prediction
» SHM BIM based alerting SAS platform
» Flooding Methodology

» Command and Control

» Key words: Satellite monitoring | Flooding and risk mapping | Structural health
monitoring: satellite and ground data based | Shake maps | Data fusion /
Common and Control Centre
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Risk Mapping Tool

» Objective: Early identification of large-scale risks to extreme natural disasters
affecting road and railway infrastructures.

» Estimation of potential risks to be used in the early phases of project design.

» Definition of hazard and risk maps at European level.
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Risk Mapping Tool
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Objective: To predict timing of slope instability that may disrupt transport
networks.

The tool is based on a numerical model of slope failure where the stability of

the slope depends on the pore pressure of water.

The model innovative feature is its parametrization | “| ™" -’
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Virtual Modelling Platform and Asset Failure Prediction

Gase Study, 2AQ]

—— Observed Failures
i N  ~— Modelled Failur es [ 08200
|
® e
|
' amse
|
a1 T s
5 g
H " s e 5
£ . z
2 || 3
5 | -
E i | 2
2 || wners B
I/
-
/ aseaso
- 6.00028
-2 o y . Ay i N B S R S ca——ra—— osaon
Calibrated B T 5 < b Failure Time (days)
g R /" ) g ST
e Pre failure ;
. Post failure
At failure



SHM BIM based alerting SAS platiorm

» Obijective: To provide structural health monitoring assessment by using satellite
data.

» How S-SHM can improve the infrastructure management towards resilience:
» Integration of different data sources;
» BIM model of the infrastructure and components to be kept under control;
» Increased reliability of identifying warning thresholds;
» Used to program and design interventions;

» Timely warning of potential events with a positive impact on mobility and safety.



PSI data:
Observed past and ongoing motion

In-situ sensors data:
Observed past an ongoing motion

Landslide Failure Prediction Model:
Predicted terrain motion
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Flooding Methodology — Usual Methodology
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Flooding Methodology

Question:

s the flood generated by the event of a
given return period a good estimator of the
return level of the flood for the same
return period?



Flooding Methodology - Desired methodology
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Flooding Methodology - Proposed methodology
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Flooding Methodology - Proposed methodology
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Flooding Methodology — Flood Maps
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Flooding Methodology — Flood Maps
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Objective: The C2 serves for training purposes to increase (situation) awareness
of the users in the FORESEE Toolkit

It provides interactive real-time visualization and natural Human Computer
Interaction

Big data analytics and machine learning



Command and Control Centre (C2
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Command and Control Centre (C2)

» Working hypothesis:
» Efficient anomaly detection -> machine learning techniques: neural networks

» Alarms raised using anomaly detection -> enhance the situational understanding of the
infrastructure operators

» Faster detection time when problems occur (compared to a manual observation of the sensor data)

» Neural networks achieve efficient anomaly detection by learning the normal ‘behaviour’

of an infrastructure

» Allowing them to detect when new data points lay outside of this normal ‘behaviour’
and issue meaningful alerts.



First approaches with unsupervised Generative Adversarial Network (GAN) and Autoencoder
O GAN: Adversarially Learned Anomaly Detection (ALAD)
O Autoencoder: Deep Autoencoding Gaussian Mixture Model (DAGMM)

Discussions with experts:
O Instead of an unsupervised learning approach with ALAD or DAGMM, a supervised learning approach might be more appropriate

O A framework developed by Fraunhofer IAIS: Adversarially Trained Autoencoders (ATA)

Pre-processing of sensor data

O PostgreSQL, HDF5 O Data preparation, data harmonization, data cleaning, data scaling

Due to the different nature of the data of the case studies -> One neural network per Case Study necessary

Containerization of the trained network with Docker Deploy on a Fraunhofer server and provide it via Internet

Building REST API (FastAPI) and providing endpoints Frontend development / integration into toolkit lead by RINA-C



Machine Learning:

4
Historical data randomly split into trainset and testset (e.g., 80% and 20%)
Model trained and build on trainset of historical data
Trained and fixed model tested and validated on testset of historical data

4

Trained and fixed model applied on new data (“live data” /“real time”)

Output:
O Prediction for new data based on the model

O Anomaly score as an indicator for normal or anormal event / hazard



Command and Control Centre (C2)

» Anomaly score:
» Indicator on “how’” anormal an event is

» Threshold as an output of the trained and fixed model
» Anomaly score > threshold — anormal event / hazard — alarm

» Anomaly score < threshold — normal event — no alarm
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